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Classification of days based on weather impact on the National Airspace System is 
essential to evaluate the effectiveness of traffic management decisions in the past, which 
ultimately can improve the operational readiness when similar events occur in the future. To 
achieve this goal, this paper presents a methodology to classify days based on severe weather 
impact on traffic. A daily index of the impact of severe weather on scheduled traffic flow, 
termed as the Weather Impacted Traffic Index, is used as an input to perform the 
classification. First, a factor analysis is performed to identify the dominant weather patterns 
that occur on various days. Six major weather factors are identified based on this analysis. 
Factor scores are obtained for each day based on the day’s weather location and severity. 
Days are clustered using Ward’s minimum-variance method applied to the daily factor 
scores. The outcome of the analysis is a set of 21 clusters and days within each cluster. While 
the weather and traffic in the days belonging to a common cluster are similar, they are not 
completely identical. Following the classification of days, the reroute advisories are analyzed 
to identify the frequently used routes on days belonging to various clusters. It is observed 
that the most frequently used reroutes on days that belong to a particular cluster exhibit 
similarity to the National Playbook routes designed to mitigate weather impact on those 
days, which is an intuitive result that is supported by data analysis. 

I. INTRODUCTION 
dverse weather reduces the capacity of the National Airspace System (NAS) by partially or completely 
blocking routes, waypoints, and airports. During such conditions, traffic managers at the FAA’s Air Traffic 

Control System Command Center (ATCSCC) and dispatchers at various Airlines’ Operations Center (AOC) 
collaborate to mitigate the demand-capacity imbalance caused by weather. The end result is the implementation of a 
set of Traffic Flow Management (TFM) initiatives such as ground delay programs, reroute advisories, flow 
metering, and ground stops. The performance of the TFM control actions is measured using a set of metrics such as 
total delay, cancellations, diversions, additional flying time, airborne holding time, loss of predictability of 
operations, etc. These performance metrics vary from day-to-day based on the severity, location, and characteristics 
of weather as well as the effectiveness of TFM control actions. 

If a particular day can be characterized as being similar, in terms of weather and traffic, to a few days in the past, 
then the TFM control actions from those days could serve as a basis for strategizing TFM on the current day of 
operation. A thorough post-operational evaluation of TFM actions in the past can reveal the potential areas of 
improvement, if possible. Doing so will better equip the NAS users (i.e., airlines) and the service provider (i.e., 
ATCSCC) with information to mitigate weather impact, and hence, improve the operational readiness. It will also 
improve the predictability of TFM control actions if the weather forecasts are reasonably accurate on a given day.  

A successful classification of days is necessary to evaluate the effectiveness of TFM actions on days that are 
similar. This paper presents a methodology to classify days based on weather and traffic pattern and to cluster them 
into groups. Days belonging to the same cluster may not be identical, but are statistically close enough. The Weather 
Impacted Traffic Index (WITI) measures the location and severity of weather and its impact on traffic.1 Daily WITI 
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of twenty Air Route Traffic Control Centers (commonly termed as Centers) encapsulating the continental United 
States (see FIGURE 1), and that of the entire NAS, for each day in 2011 are used to perform the classification. 
Using these data, a factor analysis2,3 is performed to identify the dominant weather patterns. For each day, the 
dominant factors are scored based on the day’s WITI values, which reveals the major weather phenomena on a given 
day. Clustering of days based on the factor scores is then performed.3 The outcome of the analysis is a set of clusters 
and days within each cluster. 

 
 Center and NAS WITI used as input data primarily indicates the impact of severe weather on en route traffic, and to 
a lesser extent its impact on airports. Airport-level congestion measures4,5 can be included to classify days even 
further, but this is left for future analysis. Following the classification of days based on WITI, the reroute advisories 
on days belonging to various clusters is analyzed. The purpose of this analysis is to identify if there are any 
commonly used reroutes on various cluster (i.e., type) of days, and whether those routes avoided the severe weather 
impacted regions. 

The remainder of this paper is organized as follows. The next section presents the formal description of WITI, 
and a literature review of data classification methods applied to problems in air traffic management. Description of 
data is presented next. The following section presents the factor analysis and clustering results. The paper ends with 
conclusions followed by references. 

II. BACKGROUND 

A. Weather Impacted Traffic Index (WITI) 
For the sake of readability, a brief description of WITI and its use in air traffic management research is presented 

here. WITI, as the name suggests, is an index that measures the impact of severe weather on traffic. On weather-
impacted days aircraft are rerouted so they avoid severe weather. WITI for a weather-impacted day is computed by 
superimposing the weather cells over aircraft trajectories from a nominal (i.e. weather-free) day. Thus, WITI is an 
indicator of the severity of weather as well as its impact on nominal, weather-free, traffic. Suppose a grid is overlaid 
on the NAS, and 

€ 

Wi, j (t)  be a binary variable, which assumes the value of 1 if the cell 

€ 

(i, j)  in the grid is impacted 
by severe weather at time 

€ 

t ; 0 otherwise. Let 

€ 

Ti, j (t)  denote the number of aircraft present in the cell 

€ 

(i, j)  at time

€ 

t . 

 
FIGURE 1: Twenty Centers Encompassing Continental U.S. Airspace and their Abbreviations 
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The WITI of the cell 

€ 

(i, j)  at time 

€ 

t , denoted as 

€ 

WITIi, j (t) , is simply the product of 

€ 

Wi, j (t)  and 

€ 

Ti, j (t) . WITI of a 
region (e.g., a Center) over a period of time is computed by summing the WITI of all grid cells that belong to the 
region over the time duration. A formal description of WITI is provided in Ref. 1. WITI is used in this paper 
primarily captures the impact of severe weather on en route traffic. This variant of WITI is used in the analyses 
presented in this paper. Other variants that compute airport-level impact of weather also exist in the literature.5 

B. Literature Review of Data Classification 
There are well-established methodologies for data classification in general.6 However, the literature on 

classifying days in the NAS based on weather impact is sparse. The relevant ones to this study are discussed in this 
section. 

Ref. 7 applied principal component analysis to identify eight key variables that define the characteristics of a 
day. These are: total NAS delay, gate delays, on-time performance, traffic volume, cancellations, airport 
performance metric, volume-related delays, and weather-related departure delay minutes. They classified days based 
on these variables and identify six clusters. Days within a cluster have similar attributes as the key variables, and are 
representative of a type of day in the NAS. While the methodology for classifying days in Hoffman et al. and in this 
study are similar to a large extent, they differ in the selection of variables to characterize days. The key variables 
that characterize days in Ref. 7 are related to the performance metrics, which are the outcome of causalities and 
control actions taken. In the present study, however, the emphasis is to group days based on spatial distribution of 
weather impact. Thus, the variables used in this study are related to causality, rather than outcome, of disruption. 

Another study closely related to this paper is by Ref. 8. This study divides the NAS into five regions and cluster 
days based on their WITI values. A K-Means clustering algorithm6 is applied to cluster days. The primary difference 
between Ref. 8 and this study is the application of factor analysis that precedes clustering of days. Factors capture 
the correlation between WITI of various Centers, which is missing in Ref. 8. Moreover, using Center WITI in our 
study accounts for the spatial distribution of weather to a greater extent. 

There are other applications of clustering and data classification in problems related to air traffic management. 
Ref. 9 applied a K-Means clustering algorithm to identify patterns of airport acceptance rates at a few of the busiest 
airports in the United States. Ref. 10 applied clustering methods to identify dominant flows at airport terminal areas 
as well as in the en route airspace, from a given set of individual flight trajectories. 

III. DATA DESCRIPTION 
Daily WITI values for 20 Centers, shown in FIGURE 1, and for the entire NAS were obtained for 332 days in 

2011. There were missing weather data for extended periods of time on 33 days, and hence, those days were omitted 
from the analysis. Traffic data for WITI computation was obtained from the Enhanced Traffic Management System 
(ETMS). As mentioned before, flight trajectories from weather-free days were used for WITI computation. The 
Corridor Integrated Weather System (CIWS), obtained from MIT Lincoln Lab, provided the location and severity of 
weather. The CIWS data provides Vertically Integrated Liquid (VIL) level at each cell in a 1-square kilometer grid 
overlaid on the continental U.S. VIL level greater than or equal to 3 was assumed to be severe. The Future Air 
Traffic Management Concept Evaluation Tool (FACET),11 which is a simulation software developed at NASA, was 
used to compute WITI using the traffic and weather data. For the analyses in this paper, a day constituted of 24 
hours ranging from 08:00 Coordinated Universal Time (UTC) to 07:59 UTC the following day. 

FIGURE 2 shows the variation of daily total WITI for the entire NAS for the year 2011. A seasonal 
trend is evident from the figure. Convective weather during summer months increases WITI, whereas the 
weather impact is relatively low during winter, fall and spring months. Almost all days when the WITI is 
above the 3rd quartile are in the summer. As revealed by the descriptive statistics shown in FIGURE 2, 
there is noticeable day-to-day variation in WITI. 
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FIGURE 2: Daily Total WITI of the NAS in 2011 
 

While the NAS WITI reveals the severity of weather impact over the entire continental U.S., the Center-level 
WITI serves as indicators of which Centers are impacted most. The five Centers that had highest average daily WITI 
are: Jacksonville (ZJX), Washington D.C. (ZDC), Atlanta (ZTL), Miami (ZMA), and Memphis (ZME). As shown in 
FIGURE 1 these Centers cover most of the northeast and southeast regions of the United States. Along with being 
impacted by severe weather, these Centers handle a high volume of traffic, which drives up the WITI. 

Rerouting, along with airspace flow programs, are the main TFM controls implemented in response to en route 
weather. Most of the time, reroutes are selected from the National Playbook,12 which provides a set of rerouting 
schemes for common adverse weather scenarios in the NAS. Reroute advisories for each day in 2011 were obtained 
from the FAA’s National Traffic Management Log database. While the TFM controls were not used as a basis to 
classify days, the reroute advisories were analyzed to identify if there are any patterns of reroutes used on different 
types (i.e. clusters) of days. 

IV. CLASSIFICATION OF DAYS USING WITI 
As the total NAS WITI in a given day is the sum of that of the 20 Centers (shown in FIGURE 1), it suffices to 

include the WITI values of the NAS and any of 19 Centers in the factor and cluster analyses described here; Seattle 
Center (ZSE), which had the lowest average daily WITI, was excluded. FIGURE 3 describes the overall 
classification process. A factor analysis was performed using the daily WITI of the NAS and 19 Centers. The factor 
analysis generates the major weather factors, which are measured by location and severity of weather, impacting the 
NAS. For each day, factors are scored using the coefficients estimated from the factor analysis and the WITI values. 
The factor scores are then used as inputs to a clustering algorithm, which generates a set of clusters, each of which 
contains days that are similar in weather impacted traffic. SAS/STAT® Version 9.1 software was used to perform 
the analyses. 
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A. Factor Analysis 
Factor analysis is a method, which reduces the dimensionality of a dataset. This is a well-established method in 

data classification and there is substantial literature describing various aspects of factor analysis.2,3 For the sake of 
readability, a brief description is provided here. Let 

€ 

XT = {X1,...,Xn} be a vector of dimension

€ 

n . In the present 
context 

€ 

X represents a vector of dimension 20 (i.e., WITI of the NAS and 19 Centers). Let there be 

€ 

d  observations 
of 

€ 

X, which constitutes the input dataset to the factor analysis. Again, in the present context, each observation is the 
WITI values for the NAS and 19 Centers on a given day. The primary goal of the factor analysis is to relate the 
observed variables 

€ 

X with a set of latent (i.e., unobserved) factors 

€ 

f , called as common factors, as represented in 
Eq. (1). Let 

€ 

m be the dimension of

€ 

f . It is desired that the variability in the observed data can be accounted by a 
smaller set of factors (i.e.,

€ 

m << n ). 

€ 

X = Λ f + µ +ε                         (1) 
Some of the important assumptions made during factor analysis are as follows. The common factors, 

€ 

f , are 
assumed to be uncorrelated with each other and with the error 

€ 

ε . The errors 

€ 

ε  are assumed to have mean 0, and are 
uncorrelated with one another. The vector

€ 

µ  represents the mean of 

€ 

X. Based on Eq. (1), a component of 

€ 

X , say 

€ 

Xi , can be represented in terms of the factors as in Eq. (2). The relationship between the variance of 

€ 

Xi  (denoted 
by 

€ 

σ i ), coefficients 

€ 

λij , and the variance of the errors, which are denoted by 

€ 

ψi , is given by Eq. (3). The first 

component in the r.h.s. of Eq.(3), 

€ 

λij
2

j=1

m
∑ , is called the communality of variable 

€ 

Xi . It represents the extent to which 

the variance of

€ 

Xi  is accounted by common factors, 

€ 

f . Larger values of this term indicates the factor model is able 
to account for the variability of the observed variables to a large extent. 

€ 

Xi = λij f j
j=1

m
∑ + µ i +εi                      (2) 

€ 

σ i = λij
2

j=1

m
∑ +ψi                        (3) 

There are several methods to estimate the coefficients 

€ 

λij . The principal factor method has been is applied in the 
current analyses, and is described here. The input to the method are the standardized observed variables and the 
corresponding correlation matrix 

€ 

R . In the present context, each row of the input dataset contains WITI values of 

 
FIGURE 3: Classification Process 
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the NAS and 19 Centers on a given day. Thus each column in the dataset is the WITI values of a given Center over 
multiple days. The mean and standard deviation of WITI of each Center (i.e., columns in the dataset) are used to 
standardize the variables. Using the standardized variables and the correlation matrix 

€ 

R, Eq. (3) can be writing in 
matrix form, as in Eq. (4). The goal is to estimate 

€ 

Λ  and 

€ 

Ψ , given 

€ 

R.  

€ 

R = ΛΛΤ +Ψ                       (4) 
As a first step, the diagonal elements of the correlation matrix are replaced by the squared multiple correlation of 

€ 

Xi  (standardized) with all other variables. This provides an estimate of 

€ 

R−Ψ , often called as the reduced 
correlation matrix. 

€ 

Λ  is then estimated by first decomposing the reduced correlation matrix using Spectral 
Decomposition Theorem,2 and equating it to 

€ 

ΛΛΤ , as shown in Eq. (5). During this step, only 

€ 

m out of 

€ 

n  
eigenvalues, denoted by 

€ 

ai s in the equation, of the reduced correlation matrix are used. Generally, the eigenvalues 
greater than 1 are chosen during this step. In the current analysis, six factors, whose respective eigenvalues were 
greater than 1, were retained. As indicated in TABLE 1, the six factors capture about 70% of the total variation in 
the input data.   

€ 

R−Ψ = aiei
i=1

n
∑ ei

T ≅ ai
i=1

m
∑ eie i

T = ΛΛT                 (5) 

 
TABLE 1: Description of Dominant Factors 
Factor	   Eigenval

ue	  
Cumulative	  
Variation	  

Description	  

Factor	  1	   6.26	   0.31	   Severe	  weather	   impacting	  WITI	   of	   Centers	   in	   the	  
southeast	   and	   western	   regions	   of	   the	   United	  
States	  

Factor	  2	   2.45	   0.44	   Severe	  weather	  impacting	  the	  Northeast	  Centers	  
Factor	  3	   1.64	   0.51	   Severe	   weather	   impacting	   the	   Centers	   in	   the	  

Midwest	  region	  
Factor	  4	   1.45	   0.59	   Severe	   weather	   impacting	   parts	   of	   Midwest	   and	  

Atlanta	  Center	  (ZTL)	  
Factor	  5	   1.18	   0.65	   Mild	  weather	  in	  parts	  of	  the	  Western	  United	  States	  
Factor	  6	   1.05	   0.70	   Moderate	  weather	  impacting	  Centers	  in	  the	  south	  

(ZFW,	  ZHU),	  and	  northern	  part	  of	  Midwest	  (ZMP)	  
 
If 

€ 

f  is set of factors that account for the variability of the observed variables 

€ 

X , then any new set of factors, say 

€ 

f *, which are obtained by orthogonal transformation of 

€ 

f , are also equally suitable to reduce the dimensionality of 
observed data. This can be easily verified by replacing 

€ 

f  by 

€ 

GTf  and 

€ 

Λ  by 

€ 

ΛG  in Eq. (1), where 

€ 

G  is an 
orthogonal transformation matrix (i.e., 

€ 

GGT = I ). In practice, the rotated factor loadings (i.e., 

€ 

ΛG ) are used to 
better explain the relationship between the latent factors (rotated) and the observed variables. While there are several 
methods to achieve this, the varimax rotation method was chosen in the analyses of this paper. SAS/STAT® 
Version 9.1 software was used to perform the analysis. The rotated factor loadings, which indicate the correlation 
between observed variables (i.e., WITI) and rotated factors, are provided in TABLE 2. Based on the rotated factor 
loadings, the description of the six dominant weather factors are provided in TABLE 1. The numbers highlighted in 
bold in TABLE 2 indicate strong correlation (values higher than 0.40) between a factor and an input variable. 
FIGURE 4 shows four main regions in which various Centers belong, as described in the Census Bureau.13 This 
geographic division of the Centers is used in describing various factors in the subsequent discussions. 
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TABLE 2: Rotated Factor Loadings 
Regional	  
WITI	  

Factor	  1	   Factor	  2	   Factor	  3	   Factor	  4	   Factor	  5	   Factor	  6	  

NAS	   0.48	   0.45	   0.50	   0.47	   0.14	   0.26	  
ZAB	   0.44	   0.20	   0.20	   -‐0.01	   0.60	   0.15	  
ZAU	   0.20	   -‐0.07	   0.80	   -‐0.07	   -‐0.11	   0.12	  
ZBW	   0.23	   0.82	   0.05	   0.02	   0.04	   0.11	  
ZDC	   0.17	   0.75	   0.07	   0.20	   0.28	   -‐0.04	  
ZDV	   0.63	   0.18	   0.16	   -‐0.04	   0.25	   0.29	  
ZFW	   -‐0.15	   -‐0.05	   0.18	   0.24	   0.05	   0.77	  
ZHU	   0.19	   0.22	   0.06	   0.31	   -‐0.11	   0.50	  
ZID	   0.02	   0.11	   0.70	   0.47	   0.03	   0.07	  
ZJX	   0.79	   0.11	   0.04	   0.28	   0.02	   -‐0.06	  
ZKC	   0.03	   -‐0.02	   0.64	   0.11	   0.24	   0.30	  
ZLA	   0.18	   0.13	   -‐0.03	   -‐0.06	   0.81	   0.02	  
ZLC	   0.68	   0.23	   -‐0.01	   0.02	   0.32	   0.21	  
ZMA	   0.77	   0.13	   0.16	   0.09	   -‐0.01	   -‐0.12	  
ZME	   -‐0.05	   0.01	   0.29	   0.80	   0.10	   0.27	  
ZMP	   0.46	   0.01	   0.25	   -‐0.15	   -‐0.04	   0.58	  
ZNY	   0.10	   0.94	   0.09	   0.05	   0.09	   0.00	  
ZOA	   -‐0.04	   0.06	   -‐0.01	   0.19	   0.73	   -‐0.12	  
ZOB	   0.12	   0.34	   0.73	   0.18	   -‐0.03	   0.00	  
ZTL	   0.37	   0.20	   0.06	   0.74	   0.07	   0.06	  

 
 

The six dominant factors in TABLE 1 represent the most common weather impacted traffic patterns in the 
continental United States. WITI of the NAS and various centers are a linear combination of the factors. On a given 

 
FIGURE 4: Geographic Division of the Centers into Four Regions 
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day, weather could span over multiple regions of the NAS triggering higher values for more than one factor.  One of 
the important outcomes of the factor analysis is the estimate of factor scores. Higher score of a factor on a given day 
indicates the presence of the corresponding weather pattern on that day. Note that these are different from the factor 
loadings, which are the elements of 

€ 

Λ . It is therefore of interest to estimate the factor scores, which represent the 
magnitude of various factors on each day, given the observed variables 

€ 

X and the factor loadings 

€ 

Λ . While there 
are several methods that estimate the factor scores, Ordinary Least Squares method,2 which minimizes the sum of 
squares of the residuals, as given in Eq. (6), has been applied in the current analyses. Given the vector of observed 
variables on day 

€ 

i , 

€ 

Xi , the factor scores for that day, 

€ 

fi , are estimated by minimizing the squares of the residuals. It 
is these factor scores that are used as input to the clustering algorithm described in the next section. 

€ 

fi
min eiTei =

fi
min (Xi − µ − Λfi )

T (Xi − µ − Λfi )              (6)  

 

B. Clustering of Days 
Ward’s minimum-variance method14 was applied to cluster days based on the factor scores on each day. Ward’s 

algorithm is a hierarchical clustering method for reducing a set of observations into smaller subsets while 
minimizing the sum of variances of observations in each subset. In the present context, clusters are formed so that 
the total sum of squares of the Euclidean distances between factor scores of the days within the clusters is 
minimized. Twenty-one clusters were retained based on the pseudo-t2 and pseudo-F statistics. R2 indicates that the 
21 clusters account for almost 70% variation of the input data. 

The severity of weather in various Centers and that in the NAS for the 21 clusters are shown in FIGURE 5. 
Severity of weather in the Centers is indicated by different colors. For a given cluster, the Centers whose daily 
WITI, averaged over all days in the cluster, is above the 90th percentile of the distribution of daily Center-level WITI 
are colored red. These are the Centers that face severe weather in the days that belong to the particular cluster. 
Similarly, yellow indicates WITI between 75th and 90th percentiles (i.e., moderate weather), while blue indicates 
mild or no weather. 

The overall NAS weather in the days belonging to the first four clusters (cluster numbers 0-3 in abscissa) is mild. 
However, there is variation in the Center-level WITI between the individual clusters. For example, Cluster1 
indicates a mild weather day with primary impact on the southeast Centers – Jacksonville (ZJX) and Miami (ZMA). 
Cluster2, on the other hand, indicates days with weather in the Midwest impacting the following Centers: Chicago 
(ZAU), Indianapolis (ZID), and Kansas City (ZKC). Severity of overall NAS weather is high in the Clusters 6, 7, 12, 
and 14 – 20. Not surprisingly, there are many more Centers impacted by moderate and severe weather in these 
clusters compared to those corresponding to mild weather days. The number of days within each cluster varied 
between 1 and 123. There was only one day in each of the clusters 19 and 20. These days were unique to an extent 
that they did not belong to any other “groups” of days. Cluster0 contained 123 days, most of them in the winter, fall, 
and spring months. As shown in FIGURE 2, the NAS WITI in these months are usually low, which corroborates 
with FIGURE 5. 

As indicated in FIGURE 5, there is noticeable variation in the Center-level WITI between the clusters. This is 
due to day-to-day variation in the weather, and in particular, the occurrence of multiple dominant weather factors 
described in TABLE 1. As discussed in the previous section, the dominant factors capture the correlation between 
Center-level WITI. As can be seen in FIGURE 5, the severity of weather in Jacksonville (ZJX) and Miami (ZMA) 
Centers is similar across clusters. This is because weather occurring in the southeast U.S. impacts both these Centers 
simultaneously. 

The Centers that are impacted by severe weather on the days belonging to Cluster14 are shown in FIGURE 6. 
There were 7 days in this cluster. As can be seen in the figure, severe weather primarily impacts Centers in the 
Midwest and southern United States. Weather factors 3, 4, and 6 had high scores on the days within this cluster. This 
corresponds to the Centers whose average WITI values are high in the figure. Reroute advisories on the days in this 
cluster were analyzed to identify the frequently used routes. FIGURE 7 shows 15 major National Playbook routes 
that were used to reroute aircraft in response to severe weather on the 7 days in this cluster. The top 15 Playbook 
reroutes constitute almost 50% of all the reroute advisories that were implemented on these days. The Playbook 
advisory “ATL_NO_BNA”, which constitute a set of reroutes for flights destined to Atlanta Hartsfield International 
Airport (ATL), was used most frequently. Reroutes for flights destined to Chicago O’Hare airport (ORD) were the 
second most commonly used. Several of the Playbook routes for flights using the Houston Center (ZHU) and those 
destined to Dallas Fort Worth International Airport (DFW) are used quite often. As evident from FIGURE 6, these 
airports and Centers are severely impacted on the days in Cluster14. Thus, not surprisingly, the frequently used 
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Playbook routes are the ones designed to avoid weather in the Centers that are severely impacted. Similar trends 
were observed for reroutes on days belonging to other clusters. 

 

 

 
FIGURE 5: Severity of NAS and Center-Level Weather for Various Clusters  

 
FIGURE 6: Severe Weather Impacted Centers in Days Belonging to Cluster14 
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V. CONCLUSIONS 
This paper presents a methodology to classify days based on weather and its impact on traffic in the NAS. The 

daily WITI of twenty Centers encapsulating the continental United States, and that of the entire NAS, are used to 
perform the classification. Using these data, a factor analysis is performed that led to the identification of six 
dominant weather patterns in the NAS. For each day, the dominant factors are scored based on the day’s WITI 
values and the scoring coefficients obtained from the factor analysis. The dominant factors represent the major 
weather phenomena that occur in the NAS on a typical day. Days are clustered using Ward’s minimum-variance 
method applied to the daily factor scores. The outcome of the analysis is a set of 21 clusters and days within each 
cluster. Following the classification of days based on WITI, the reroute advisories on days belonging to various 
clusters are analyzed. It is observed that the most frequently used reroutes on days that belong to a particular cluster 
are the National Playbook routes designed to mitigate weather in the regions impacted severely on those days, which 
is an intuitive result that is supported by data analysis. 

A distinguishing aspect of this research is the use of variables, which are the cause of disruption in the NAS, as 
input to the classification process. In the past, researchers have used performance metrics, which are the outcome of 
causal effect and controls, to do similar analysis. Classification of days into groups with similar causalities (i.e., 
weather and traffic) can facilitate researchers and TFM decision makers to analyze the effectiveness of TFM 
decisions that were made in the past. A thorough post-operational evaluation of TFM actions in the past can reveal 
the potential areas of improvement. It will prepare NAS users and decision makers to mitigate similar situations in 
the future, and hence, improve the operational readiness of the system. Another potential application of this research 
is to develop TFM strategies that are contingent upon realized weather scenarios. While the days belonging to a 
particular cluster are, in general, similar, they are not completely identical. Thus, by analyzing how weather evolved 
on different days of the same cluster, one can develop scenarios of weather, which can ultimately serve a basis for 
contingency planning of TFM decisions. 

Future extension of this research will include airport-level congestion measures along with en route WITI to 
classify days. Larger numbers of days will be required to improve the performance measure of the factor analysis 
and clustering algorithm. Hourly WITI can be used to capture the varying impact of weather during different times 
of day. The paper is concluded with a note on the statistical methods used in the classification process. While there 
exists a plethora of methods for clustering data, the suitability of a particular method varies with the properties of the 
dataset on which it is applied. 

 
FIGURE 7: Top 15 National Playbook Reroutes Implemented in Days of Cluster14 
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